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ON THE SOLUTION OF PERTAIN INTE~~L EQUATIONS OF NIXED PROBL~S 
OF PLATE BENDING THEORY* 

Tbe problem of the bending of a Kirchhoff-Love plate in the shape of a 
strip under the impression of a thin linear rigid inclusion fastened at 
one of the edges of the plate when the other edge of the plate is rigidly 
clamped is considered. The problem is reduced by a Fourier integral 
transform to the solution of a convolution-type integral equation of the 
first kind in a finite segment with a regular kernel. The exact inversion 
of the principal part of the corresponding integral operator is constructed 
in the class of functions with non-integrable singularities on the segment 
edges. or, effective asymptotic solution is given for the integral equation 
under investigation in this class of functions in the whole range of 
variation of the characteristic parameter X. The results obtained are 
verified numerically. Analogous integral equations were examined in /l, 2/. 
The mode of investigation is similar to that proposed in /3/. 

1. Formulation 05 the problem. A semi-infinite Kirchhoff-Love plate of width 

h(lsl<=, 0 Qg <<hf is considered. The side face (y = 0) is rigidly clamped while a 
rigid thin inclusion of length 2a , impressed in the plate by a force P, is soldered to the 
other face (g =h.) for 15 I<a. A function f(z) describes the shape and settlement of the 
inclusion. The other part of the face y = h, outside the inclusion, is force-free. There 
is non normal laod on the plate. In this case the plate deflection w(z,#) is described by 
a biharmonic equation with the boundary conditions 

A2w (z. g) = 0 
w (i, 0) = w,' (z, 0) = 0, 1 z I < 00 
M, (6 h) = V, (2, h) = 0, 12 I > a; 
M, (2, h) = 0, w (z, h) = f (it), I z I < a 
w(z,y)--,O as ~~-_,Do 

The mixed boundary value problem (1.1) is reduced by a Fourier transformation to the 
solution of an integral equation of the first kind with the difference kernel 

aa j: ~(F)dEjKh!CORU~dY=Ilf(I). 121 <,<t (1.2) 
0 

r&a'(3 -2Y - V2)Lw"(l,h), hE+ 0.3) 

K (u) = I/* (3 - 2v - '2)-1(sh 2~ - 2244 ch" u + 
(1 - %I)' rL2 - (1 + v)' sh2 u)-1 u-3 

Here m(x) is the reduced generalized transverse force in the segment 1s 1 Q 1, Y is 
Poisson's ratio, and D is the bending stiffness. 

The function K (u)is even and meromorphic in the complex u 
the following asymptotic properties 

= a + iz plane and possesses 

K (I.&) = u-3 + 0 (e-P"), u 4 DD 0.4) 
K (u) = A* + 0 (G), II - 0, A, = (3 - 2v - q-1 6-1 

2. Properties of the kernel of integral equation (1.2). we investigate the 
kernel of the problem under consideration 

k(t)= f K(u)cosutdu, t==(f -2)h-1 
0 

(2.V 

as t-_,O(h.+Co). 
following lemma. 

Using the asymptotic properties (1.41 for the function R(u),we have the 
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Lemma. The representation 

k W = +P In 1 t / - F(t), Jc (a) =u-SK(u) 

P(t)= I[(L(U)- f)cosUt + 1 - -+e-“] u-3 du 
0 

(2.2) 

holds for values 0 Q t< 00 for the function k (t)defined by (2.1) and (1.3). 
The function F(t) as an even function of the complex variable .z = t f in is regular in 

the strip I t I< a, Iz I< 2, where it is representable by the absolutely convergent series 

F(t) = j+d,tlk (2.3) 

OD 01 

d 0=- ‘u-JL(u)da, 
s 

d& + + 
s 

u-l (L(u) - 1 + e*) du 
0 0 

d 
DD 

s us“-s(L(s)---l)du, k=2, 3,... 
0 

To prove (2.2) it is necessary to use the integral 

m 

SC 
cosut-1+fuV%+)u-~du=-&t21n~t/--~t~ 

0 

The regularity of F(t)in the strip follows from the fact that L(u) = 1 + 0 (e-*“ as 
U--*CO and the results of /4/. From the regularity of the function F (t)(o < t< 00) its 
continuity that of all its derivatives follows. The representation in the form of the series 
(2.3) is obtained by expanding cos ut in a series in ut. 

3. Structure of the general solution of the integral equation (1.2). 
We note that information relative to the classes of solutions of the integral equation (1.2) 
is presented in /l, 2/, as well as in papers on the mixed problems of plate bending C/5-9/, 
etc.) Analysis of the papers mentioned suggests that the solution of the integral equation 
(1.2) must be sought in the class of non-integrable functions of the form 

'p (2) = 0 (s)(l - zy., 0 (4 E H, c-1, 11, Y > ‘12 

We first find the solution of the auxiliary equation 

Here d,, and d, are evaluated by means of (2.3). We note that the solution of (3.1) is 
the principal term in the asymptotic of the solution of the integral equation (1.2) for large 
h. It must be taken into account that the divergent integral on the left side of (3.1) is 
understood in the sense of the finite part /lo, ll/. 

We now regularize the integral in (3.1) by introducing the function 

rp* (I) = $7 (5) - (a + @)(I - 52)-Q (3.2) 

where a and fl are constants defined from the system of equations 

part 
with 

0 (1) - a - p = 0, 0 (-1) - CL + p = 0 

We will seek the function 'p* (5) in the class tz, (--I, 1) (0 < v < 1). 
Executing the regularization mentioned and taking the necessary quadratures in the finite 
sense, we differentiate the integral equation obtained from (3.1) and (3.2) three times 
respect to z while assuming that 

f” (2)E H, (-1, 1) (0 < y < 1) (3.3) 

We consequently obtain a singular equation to determine 'P* (I) 

whose solution is known /12/. Recalling the definition of (3.2), we find the general solution 

of (3.1) 
A.zz+nz+c ? 

(P(r)= 
(1 - z-q/. 

+ '.\ 
X f/1---I” 

l/l--L"f-(t) dt 
1-z 

A=P, B-13, C=m’P (3.4) 
-1 



where A, B, C are unknown constants related in the above-mentioned manner to the a, p, P 
taken earlier. Tjus it is shown that under the condition (3.3) the integral equation (3.1) 
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has a solution in the class of generalized functions K /ll/, which is unique. 
The constants A, B, C are related to m(x) by the following formulas 

(3.5) 

It is seen that A is the total generalized transverse force acting on a rigid inclusion, 
B is the total twistingmoment, and C is the total magnitude of the integrable part of the 
transverse force m(x). 

To determine A,B,C we multiply (3.11 by x (l- x2)-%dx and integrate with respect to 
x between -1 and 1, we then proceed analogously by multiplying (3.1) by (1 - x*)-%&z and 

(i- x")-'Mr. Taking account of the relationships obtained in this manner and of (3.5), we 
determine A, B, c. 

Without writing down the general formulas for finding A,B, C, we represent the solution 
of (3.1) in the important special case when f (x) = 1. It has the form 

cp (x) L= (Ax* + C)(1 - x*)-'11 (3.6) 
while the constants A, B, C are determined uniquely from the system of algebraic equations 

('/*" - In 2h - 2d,) A + C = 0 

(-s/z -I- 21n 2h -I- 2&h* + 44) A + 
(-VE + In 2h + 2dJ. C = 2, B = 0 

which is obtained after substituting (3.6) into (3.1) and evaluating all the quadratures. 
Under additional conditions on the constants A, 8, C, and thereby on the function f(x) 

and its derivatives as well, a solution can be obtained, say, that is integrable for x= 1. 
In this case, the relationship A 4-B -I- C i= 0, should be satisifed, and solution (3.4) takes 
the form 

On satisfying the conditions A-/-B-j-C=0 and A -B + C = 0, we obtain a solution 
integrable for ]s 1 = 1 

‘p(x)=- f&3 + xf& _l s l Wf”(f) & 

t-z 

4. Inversion formula for the integral equation (1.2). Taking the lemma into 
account, the integral equation (1.2) can be written in the form 

where F(t) has the form (2.3). 

Theorem. When condition (3.3) is satisfied, any solution of integral equation (4.1), or 
equivalently, of (1.2) from the class of generalized solutions K is also a solution of the 
integral equation 

and, conversely, while the constants A,B,C are found from the formulas 

A = 2q ff + b-z) @A)-', B = nb-' 

C = [(b-l - 2) m - I/, (11 - 6) I] A-1, A = I/,b + 1/z + b-1 
I = n”lp A- 2 (rib)_‘‘‘’ m = -C’p + 2x-14 

(4.3) 
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-1 
(qdt- 2 (nb)-’ !, t (1 - ty.g (t) 02 

g (t) = f(t) f h%r { cp(S)F(+)dE 
-1 

The inversion formula (4.2) for the integral equation (4.1) is obtained from (3.4), and 
d, B, Care found in the same way as in Sect.3. The uniqueness of solution (4.2) results 
from the uniqueness of solution (3.4). 

5. Solution Of the integral equation (4.2) or (1.2). We seek the approximate 
solution of the integral equation (4.2) with functions F(t)of the form (2.3) as a series in 
negative powers of h /12/ 

(j.1) 

Substituting (5.1) into (4.2), we obtain, by retaining three terms of the expansion in 
(5.1) and (2.3). 

qi (I) = 24 ? J/-/I s 1. 
n*)/i--11 _-l 

t-_~ dt 
s 

Xi (5, t) d& i = i,2 
-1 

XI (E, t) = d*qo (SW - E) 

~2 (E, t) = d,q, (E)(t - 5) + 5dzqo (E)(t - Q3 

The constants A, B, C are determined by the relationships (4.3). In the case f (x) = 1 
the solution of (4.1) has the form 

qo(.+=~, (1 - 9) ‘* 41(z) 

q~(~)=~[Az~+(4A+3C).z2-+A-+ 

A = a,, (d,h*A)-', C = -at1 (dOh2A)-', A = a,,a,, - allalr 

2doau=2d,+(4dr+)~+2ln2+3d~ln2h~+ 

(5.3) 

6ds (3 - dl) + 

2dacrl,=(2dr+ + +n2h $.9d& 

a.1=-ln2X--+- 2dI - 24d c& + (36d.+-dds)& 

where d, = -0.60237, d, = 0.29585, d, =il 0.06647, d, = -0.00759 in the case under consideration. 

We note that the solution of integral equation (2.1) written in the form (4.1) or (4.2) 
is effective for large values of 1 (J" > 2). 

6. Solution of the equation for small values of the parameter h. To obtain 
an effective solution of the integral equation for small h, we follow /12/. We represent 

the zeroth term of the asymptotic form of the solution cp(z)of the integral equation (1.2) for 
small h in the form 

where 'P_I (2) is the solution of the Wiener-Hopf integral equation 
_ 

X 1 'p* (5) k (z - 5) dE = nf (hr _C I), 0 -: .L < ~3 
0 

and v (z)is determined from the convolution equation 
m 

h 1 v(Qk(t--)dE=n/(hr), IL\<- 
-cc 

(6.1) 

(6.2) 

(6.3) 
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We assume that f(x) is expanded in a Fourier series and we solve (6.2) for a special 

right side e'w. TO obtain the visible solution we approximate the function K(U) bya function 
with similar asymptotic properties and easily factorizable. For instance, we take the 

expression 
(u~iEJ)(rr*+ P) 

K(a)= ,'U.+&:Uz+B) (@f@)(."+_L)d) ' li:(Q= *- f6.4) 

which is mast optimal from the viewpoint of approximating R(u) on the real axis. 
We obtain the solution of a Wiener-Hopf equation of the form (6.2) for the special right 

side 

5 ~(E)i%(5-Qdl;T1=ne*ar, O<,<x< c*3 (6.5) 

;(q= r K (P) e+=t du 
-aD 

We extend this equation over the whole real axis by introducing the function L(z) into 
the consideration /4/ 

5 P ff) ii: (x - 
new x20 

0 
3 dE - ( 1 (x), x<o (6.6) 

we apply the Fourier integral transform to the left and right sides of (6.6), whereupon 
we obtain the functional equation 

m 
. 

Cs, (a) = & o q (t) eia* dt, s 1 o 
nE_ (a) = -__ 1 (t) eh* dt 

y2n s 
Here a?, (a) is a regular function in the upper half-plane Im (a)>~ and .&(a) is 

likewise in the lower half-plane Im(a)<r,. The left and right sides of (6.7) are functions 
that are regular in the strip 1 Im (a) / <inf (Q, z~,A, B, C,D). We factorize the function K (cz), 
i.e., we represent it in the form of the product 

x (a) = K, (a) K (a) (6.8) 

and dividing (6.7) by K_(a) we obtain 

(6.9) 

The function g(a)= I$'% (a + nf IL', (q)f" is easily factorized /12/, i.e., 

g (a) = g+(a) -t g_(c) 

g+(a) =i[@i(a -I- '1) K+($I', g-f@ = i @?%(a 4 ~~l-lr~l(a}-~~*{~)l 

We hence have 

The last equation defines a regular function r(a) in the strip 

0 c Im (a) < inf k, z,, A, B, C, D, E, P) 

Taking into account that 

K, (a) - a-'% g, (a) - a*', E_(a) KP {a) - l/se-m, @+ (a) - J&?, g._ (a) - fi 

as a-*oo(x>O), and remarking that the function on the left side of (6.9) decreases as 
a-l in the regularity strip as %(a)- 00, while the right side grows as 6 in the same 
strip, by following /4/ we obtain 

@+ (a) = g+ (a)/& (a) 

Applying the inverse Fourier transform to the last relationship, we obtain 

which agrees with an analogous formula in /12/, but the 
the generalized sense. In the case of an approximation 
solution of the integral equation (6.5) has the form 

c>Im(-rl) (6.10) 

integral in (6.10) is understood in 
of the form (6.4) for K (u) the 
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(6.11) 

Other 8dutions corresponding to simpler approximations are easily obtained from (6.11). 
If f Ml = 1, then it is necessary to set ff = 0 in (6.11). 

The convolution-type integral equation on the whole real axis (6.3) is solved by using 
a Fourier integral transform /12/ and its solution has the form ~9~(az) = K-'(@ e-in*, while for 
?j=O 

2% (;z) = K"" (0) (6.U) 

Therefore, all the necessary formulas are obtained to comprise the principal term of the 
asymptotic form (6.1) of the solution of the integral equation (1.2), (4.1) for f (I) = 1. 

Later the integral characteristic of the problem is required 

i.e., the magnitude of the force with which the inclusion is impressed into the plate. F~ll~w- 
ing /12/, to calculate P by means of (6.13), we take the aeroth term of the asymptotic form 
of the solution for small 1 in the form 

(6.14) 

For a constant right side of (1.2) and (4.11, the degenerate solution v(x) is given by 
(6.12). Then substituting (6.14) into (6.13) and understanding the expression obtained as the 
convolution of the Laplacs transform, we have 

The integral (6.13) is understood in the finite-part sense, while the Laplace integral 
(6.15) is understood in the generalized sense taking the behaviour of (D(p) - pfp into 
account as p-zoo, In the case of approximation (6.4), an explicit expression can be obtained 
for P in terms of X and the constants A, B, C,1), E, F, n. Pt is not written down here because 
of its awkwardness. 

L 0.100 -0. in -1.41 -5.04 

2 
3 
5 
2 

t.5 

0.118 
-0.052 
--o.oM 

0.115 
2.34 
21.0 

-4.02 
-2.46 
-A128 

z:*$! 
-8:05 

7. Numerical ardysis of the asymptotic solutions of integral equations (1.3 
(1.3) obtained. It can be shown that the method of "large h" is effective for 122. 

and the method of "small I" for b< 2, while together they cover the whole range of variation 
of the parameter ~(O<S.(cof., Juncture of the solutions should be expected for 16X< 2. The 
table shows computations performed fox X= 2 bythecollocation method, the method of "large 
h." (formulas (5.1) and (5,3)), the method of "small L" (formula (6.1)). The collocation 

method was here used as a check on the asymptotic solutions of the "large h" and "small X" 
methods with singularities in the solution (1.2) extracted at the edges. The quadratures were 

evaluated by the trapezoid formula with 23 nodes in the (-l,l) range. In realizing the "small 
&" method- an approximation was used fox the function K:(u) of the kernel of an integral 

equation of the form (6.4) with a maximum error of 2% along the real axis. The approximation 

parameters in this case are A = 0.470787,B -c 1.7973&C ~pi.&&32,D = 1.69073. E = 0.61461, F = 2.89502, Where 

X (0) = 0.285. In the last column we give the integral characteristic of P. The maximum dis- 
crepantly between the results obtained by these methods of S==2 is 3%, and 1% in the magnitude 

of the force P. boreover, the table also gives values of the reduced generalized transverse 
force for different L, The phenomenon of plate separation from the inclusion that occurs in 
the problem becomes perceptible for X(3. For h>3 the boundary layers overlap the 
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penetrating solution. 
We note that an attempt was made /2/ to solve the integral equation 

1 

s [ m,(E) Inle-~I-t+~~/(~). Izlrl 
-1 

(7.1) 

in the class of discontinuous functions of the form (3.1). According to Sects.3 and 4, a 
general solution of the type (3.4) can be obtained for this equation, with the sole difference 
that a first-order derivative of the function f(z) should be under the integral, and not the 
third-order derivative as in (3.4). For j(z)= 0 the general solution is 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

cp (z) = (A *oe -j- B*z + C)(l - z*)“‘* (7.2) 

Substituting (7.2) into (7.1) for ff f z = 0 we obtain the solution of (7.1) found in /2/. 

The author is grateful to V.M. Aleksandrov for his interest. 
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